80 research outputs found

    The Gauss map on a class of interval translation mappings

    Full text link
    We study the dynamics of a class of interval translation map on three intervals. We show that in this class the typical ITM is of finite type (reduce to an interval exchange transformation) and that the complement contains a Cantor set. We relate our maps to substitution subshifts. Results on Hausdorff dimension of the attractor and on unique ergodicity are obtained

    Recurrence and lyapunov exponents

    Full text link
    We prove two inequalities between the Lyapunov exponents of a diffeomorphism and its local recurrence properties. We give examples showing that each of the inequalities is optimal

    Complexity and growth for polygonal billiards

    Get PDF
    We establish a relationship between the word complexity and the number of generalized diagonals for a polygonal billiard. We conclude that in the rational case the complexity function has cubic upper and lower bounds. In the tiling case the complexity has cubic asymptotic growth.Comment: 12 pages, 4 figure

    Recurrence in generic staircases

    Full text link
    The straight-line flow on almost every staircase and on almost every square tiled staircase is recurrent. For almost every square tiled staircase the set of periodic orbits is dense in the phase space

    On the resonance eigenstates of an open quantum baker map

    Full text link
    We study the resonance eigenstates of a particular quantization of the open baker map. For any admissible value of Planck's constant, the corresponding quantum map is a subunitary matrix, and the nonzero component of its spectrum is contained inside an annulus in the complex plane, zminzzmax|z_{min}|\leq |z|\leq |z_{max}|. We consider semiclassical sequences of eigenstates, such that the moduli of their eigenvalues converge to a fixed radius rr. We prove that, if the moduli converge to r=zmaxr=|z_{max}|, then the sequence of eigenstates converges to a fixed phase space measure ρmax\rho_{max}. The same holds for sequences with eigenvalue moduli converging to zmin|z_{min}|, with a different limit measure ρmin\rho_{min}. Both these limiting measures are supported on fractal sets, which are trapped sets of the classical dynamics. For a general radius zmin<r<zmax|z_{min}|< r < |z_{max}|, we identify families of eigenstates with precise self-similar properties.Comment: 32 pages, 2 figure

    Escape orbits and Ergodicity in Infinite Step Billiards

    Full text link
    In a previous paper we defined a class of non-compact polygonal billiards, the infinite step billiards: to a given decreasing sequence of non-negative numbers {pn\{p_{n}, there corresponds a table \Bi := \bigcup_{n\in\N} [n,n+1] \times [0,p_{n}]. In this article, first we generalize the main result of the previous paper to a wider class of examples. That is, a.s. there is a unique escape orbit which belongs to the alpha and omega-limit of every other trajectory. Then, following a recent work of Troubetzkoy, we prove that generically these systems are ergodic for almost all initial velocities, and the entropy with respect to a wide class of ergodic measures is zero.Comment: 27 pages, 8 figure

    Ergodicity of certain cocycles over certain interval exchanges

    Full text link
    We show that for odd-valued piecewise-constant skew products over a certain two parameter family of interval exchanges, the skew product is ergodic for a full-measure choice of parameters

    Quantisations of piecewise affine maps on the torus and their quantum limits

    Full text link
    For general quantum systems the semiclassical behaviour of eigenfunctions in relation to the ergodic properties of the underlying classical system is quite difficult to understand. The Wignerfunctions of eigenstates converge weakly to invariant measures of the classical system, the so called quantum limits, and one would like to understand which invariant measures can occur that way, thereby classifying the semiclassical behaviour of eigenfunctions. We introduce a class of maps on the torus for whose quantisations we can understand the set of quantum limits in great detail. In particular we can construct examples of ergodic maps which have singular ergodic measures as quantum limits, and examples of non-ergodic maps where arbitrary convex combinations of absolutely continuous ergodic measures can occur as quantum limits. The maps we quantise are obtained by cutting and stacking
    corecore